

LISTA DE CLASSIFICAÇÃO E ORDENAÇÃO DEFINITIVA DO MÉTODO <u>PROVA DE</u> <u>CONHECIMENTOS</u>

Recrutamento e Seleção de: Professor do Ensino Secundário Mediante: Contrato de Trabalho a Termo Concurso Nº 03/ ME/ 2021

I. RESULTADO DEFINITIVO DO MÉTODO PROVA DE CONHECIMENTOS

A presente publicação contém a lista de classificação e ordenação Definitiva após a aplicação do método Prova de Conhecimentos contendo as candidaturas Aprovadas e Não Aprovadas, referente ao concurso nº 03/ME/ 2021, com objetivo de constituir reserva de recrutamento nas áreas de Matemática e Físico-Química mediante Contrato de Trabalho a Termo, de um Professor do Ensino Secundário, Nível I, para o Ministério da Educação, Direção Geral do Planeamento, Orçamento e Gestão/ Serviço de Gestão de Recursos Humanos, conforme o anúncio de concurso nº 03/ME/ 2021, publicado na II Série do Boletim Oficial Nº 10, de 21 janeiro de 2022.

MATEMÁTICA

CANDIDATOS ADMITIDOS À FASE SEGUINTE				
Código do Candidato	Residência	*Valor da pontuação	Forma de expressão do método em causa	
03/ME/2021-MatemáticaGFAAQ	Santiago	17,0	Aprovado (a)	
03/ME/2021-MatemáticaRIDOI	Santiago	16,0	Aprovado (a)	
03/ME/2021-MatemáticaAPIEL	Santiago	15,4	Aprovado (a)	
03/ME/2021-Matemática—XRYWM	Santiago	15,3	Aprovado (a)	
03/ME/2021-Matemática—DWVWT	Fogo	14,5	Aprovado (a)	
03/ME/2021-Matemática—PZMMO	Santiago	14,0	Aprovado (a)	

440			
03/ME/2021-MatemáticaBB1F3	São Vicente	13,5	Aprovado (a)
03/ME/2021-MatemáticaLWNQI	Santiago	13,5	Aprovado (a)
03/ME/2021-MatemáticaLTZFQ	Santiago	12,8	Aprovado (a)
03/ME/2021-MatemáticaNO2PN	Santiago	12,5	Aprovado (a)
03/ME/2021-MatemáticaYD16X	Santiago	12,4	Aprovado (a)
03/ME/2021-MatemáticaQGU29	Santiago	12,3	Aprovado (a)
03/ME/2021-MatemáticaGSE0X	Santiago	12,0	Aprovado (a)
03/ME/2021-MatemáticaJZTHN	Sal	12,0	Aprovado (a)
03/ME/2021-MatemáticaPPCRC	São Vicente	12,0	Aprovado (a)
03/ME/2021-MatemáticaSSAI0	Santiago	11,6	Aprovado (a)
03/ME/2021-MatemáticaZW0OD	Santiago	11,6	Aprovado (a)
03/ME/2021-Matemática1YNKY	Santiago	11,5	Aprovado (a)
03/ME/2021-MatemáticaPB89S	Santiago	11,5	Aprovado (a)
03/ME/2021-MatemáticaEZIHH	Fogo	11,3	Aprovado (a)
03/ME/2021-MatemáticaVPPLI	Sal	11,1	Aprovado (a)
03/ME/2021-Matemática6QQN8	Santiago	11,1	Aprovado (a)
03/ME/2021-Matemática8BFVB	Santo Antão	11,0	Aprovado (a)
03/ME/2021-MatemáticaM72L2	Santiago	10,9	Aprovado (a)
03/ME/2021-Matemática—AUUCM	Santiago	10,8	Aprovado (a)
03/ME/2021-MatemáticaZIYCL	Sal	10,8	Aprovado (a)
03/ME/2021-MatemáticaHH753	Santiago	10,8	Aprovado (a)
03/ME/2021-MatemáticaSDBZM	Santiago	10,8	Aprovado (a)
03/ME/2021-MatemáticaLG0WC	Santiago	10,7	Aprovado (a)
03/ME/2021-Matemática0ASZX	Santiago	10,6	Aprovado (a)
03/ME/2021-MatemáticaH86AQ	São Vicente	10,6	Aprovado (a)
03/ME/2021-MatemáticaZR3AX	Santiago	10,5	Aprovado (a)
03/ME/2021-MatemáticaTKMLC	Santiago	10,5	Aprovado (a)
03/ME/2021-MatemáticaHPVOO	Santiago	10,5	Aprovado (a)
03/ME/2021-Matemática—UWUUL	Santiago	10,4	Aprovado (a)
03/ME/2021-MatemáticaWQOIU	Santo Antão	10,3	Aprovado (a)
03/ME/2021-MatemáticaLZDOT	São Vicente	10,3	Aprovado (a)
03/ME/2021-Matemática—1RTFK	Santiago	10,3	Aprovado (a)

03/ME/2021-MatemáticaE4CBT	Santiago	10,3	Aprovado (a)
03/ME/2021-Matemática8M31T	Santiago	10,3	Aprovado (a)
03/ME/2021-MatemáticaMUY9B	São Vicente	10,2	Aprovado (a)
03/ME/2021-MatemáticaXCFWJ	Santiago	10,0	Aprovado (a)
03/ME/2021-MatemáticaHQ7FF	Santiago	10,0	Aprovado (a)
03/ME/2021-MatemáticaMKTCK	Santiago	10,0	Aprovado (a)
03/ME/2021-MatemáticaCACTE	Santiago	10,0	Aprovado (a)
03/ME/2021-Matemática—MNXMY	Santiago	10,0	Aprovado (a)

FISÍCO-QUÍMICA

CANDIDATOS ADMITIDOS À FASE SEGUINTE				
Código do Candidato	Residência	*Valor da pontuação	Forma de expressão do método em causa	
03/ME/2021-Físico-QuímicaHHRHV	Fogo	18,0	Aprovado (a)	
03/ME/2021-Físico-Química12U4L	Santiago	16,5	Aprovado (a)	
03/ME/2021-Físico-QuímicaDCFCG	Santiago	15,8	Aprovado (a)	
03/ME/2021-Físico-QuímicaB1VLV	São Vicente	15,5	Aprovado (a)	
03/ME/2021-Físico-QuímicaQOVDW	Santiago	15,4	Aprovado (a)	
03/ME/2021-Físico-QuímicaTXOVG	Santiago	14,9	Aprovado (a)	
03/ME/2021-Físico-Química—FG2E2	Santiago	14,8	Aprovado (a)	
03/ME/2021-Físico-QuímicaHOKS6	Santo Antão	14,5	Aprovado (a)	
03/ME/2021-Físico-QuímicaQJACU	Santiago	14,2	Aprovado (a)	
03/ME/2021-Físico-QuímicaVRMMZ	Santiago	13,5	Aprovado (a)	
03/ME/2021-Físico-QuímicaQE3ZI	Santiago	13,4	Aprovado (a)	
03/ME/2021-Físico-QuímicaDZVTI	Santiago	12,9	Aprovado (a)	
03/ME/2021-Físico-QuímicaNEAKK	Santiago	12,7	Aprovado (a)	
03/ME/2021-Físico-QuímicaLSKBH	Santiago	12,5	Aprovado (a)	
03/ME/2021-Físico-QuímicaJUUGB	São Vicente	12,4	Aprovado (a)	

03/ME/2021-Físico-QuímicaPOWEV	Santiago	11,9	Aprovado (a)
03/ME/2021-Físico-QuímicaESWHB	Santiago	11,6	Aprovado (a)
03/ME/2021-Físico-QuímicaBGHRR	Santo Antão	11,4	Aprovado (a)
03/ME/2021-Físico-QuímicaZPSIE	Santiago	11,3	Aprovado (a)
03/ME/2021-Físico-Química-AKEDD	Santiago	11,0	Aprovado (a)
03/ME/2021-Físico-QuímicaOVZEG	Santiago	11,0	Aprovado (a)
03/ME/2021-Físico-QuímicaBNRRH	Santiago	11,0	Aprovado (a)
03/ME/2021-Físico-QuímicaLXBJI	Santiago	11,0	Aprovado (a)
03/ME/2021-Físico-QuímicaTMICR	Brava	10,7	Aprovado (a)
03/ME/2021-Físico-QuímicaH40BI	Santo Antão	10,5	Aprovado (a)
03/ME/2021-Físico-QuímicaBKTLY	Santiago	10,4	Aprovado (a)
03/ME/2021-Físico-QuímicaZ92BL	Santo Antão	10,2	Aprovado (a)
03/ME/2021-Físico-QuímicaONIIF	Santiago	10,2	Aprovado (a)
03/ME/2021-Físico-QuímicaTDEUM	Boavista	10,0	Aprovado (a)
03/ME/2021-Físico-QuímicaMBWIJ	Santiago	10,0	Aprovado (a)
03/ME/2021-Físico-QuímicaHGIFK	Santiago	10,0	Aprovado (a)
03/ME/2021-Físico-QuímicaAV6PI	Santiago	10,0	Aprovado (a)
03/ME/2021-Físico-QuímicaJMYG9	Boavista	10,0	Aprovado (a)
03/ME/2021-Físico-Química2VRJT	São Vicente	10,0	Aprovado (a)
03/ME/2021-Físico-QuímicaLEQNM	Fogo	10,0	Aprovado (a)
03/ME/2021-Físico-QuímicaE2V8F	Santiago	10,0	Aprovado (a)
03/ME/2021-Físico-QuímicaUQIV3	Santiago	10,0	Aprovado (a)

Ш.

<u>MATEMÁTICA</u>

CANDIDATOS EXCLUÍDOS NO CONCURSO				
Código do Candidato Residência Valor da Forma de expressã pontuação do método em cau:				
03/ME/2021-Matemática521VF	Santiago	8,8	Não Aprovado (a)	

03/ME/2021-MatemáticaFJJEL	Sal	8,8	Não Aprovado (a)
03/ME/2021-MatemáticaDJSAV	Santiago	8,6	Não Aprovado (a)
03/ME/2021-MatemáticaKRBXF	São Vicente	8,6	Não Aprovado (a)
03/ME/2021-Matemática6NAVH	Santiago	8,3	Não Aprovado (a)
03/ME/2021-MatemáticaW9TLN	Santiago	8,2	Não Aprovado (a)
03/ME/2021-MatemáticaV0ZFV	Fogo	8,1	Não Aprovado (a)
03/ME/2021-MatemáticaOFIHC	Santiago	7,5	Não Aprovado (a)
03/ME/2021-Matemática—2EO6D	Santiago	7,5	Não Aprovado (a)
03/ME/2021-MatemáticaXY7SY	Santo Antão	7,5	Não Aprovado (a)
03/ME/2021-Matemática4FJ3Q	São Vicente	7,3	Não Aprovado (a)
03/ME/2021-MatemáticaY6AVK	Santiago	7,1	Não Aprovado (a)
03/ME/2021-MatemáticaPBRXQ	Santiago	7,1	Não Aprovado (a)
03/ME/2021-Matemática270FH	Santiago	6,8	Não Aprovado (a)
03/ME/2021-Matemática7SZCP	Santiago	6,8	Não Aprovado (a)
03/ME/2021-MatemáticaCSTG9	Santiago	6,8	Não Aprovado (a)
03/ME/2021-MatemáticaI9L2E	São Vicente	6,6	Não Aprovado (a)
03/ME/2021-MatemáticaFCOBD	Boa Vista	5,6	Não Aprovado (a)
03/ME/2021-MatemáticaRLBIS	Boa Vista	4,5	Não Aprovado (a)
03/ME/2021-MatemáticaEPRNG	Santiago	0	Faltou
03/ME/2021-MatemáticaXFLLF	Sal	0	Faltou
03/ME/2021-MatemáticaN6XWU	São Vicente	0	Faltou
03/ME/2021-MatemáticaHEFJC	São Vicente	0	Faltou
03/ME/2021-MatemáticaTPZMG	Santiago	0	Faltou
03/ME/2021-Matemática0C6W5	Santo Antão	0	Faltou
03/ME/2021-MatemáticaDWU3I	Santiago	0	Faltou
03/ME/2021-Matemática63UDS	Santiago	0	Faltou
03/ME/2021-MatemáticaYO2LF	Sal	0	Faltou
03/ME/2021-MatemáticaXFMI8	Santiago	0	Faltou
03/ME/2021-Matemática—XWMZL	Santiago	0	Faltou
03/ME/2021-MatemáticaFDA2X	Fogo	0	Faltou
03/ME/2021-MatemáticaDYDVQ	Santiago	0	Faltou
03/ME/2021-MatemáticaM1SC4	São Vicente	0	Faltou

03/ME/2021-MatemáticaHBVSP	São Vicente	0	Faltou
03/ME/2021-MatemáticaV7ZOO	Santiago	0	Faltou
03/ME/2021-MatemáticaTL6FI	Santiago	0	Faltou
03/ME/2021-MatemáticaXKMQB	Santiago	0	Faltou
03/ME/2021-MatemáticaAFK6G	Sal	0	Faltou
03/ME/2021-MatemáticaBKZK5	São Vicente	0	Faltou
03/ME/2021-Matemática1Z90Q	São Vicente	0	Faltou

FISÍCO-QUÍMICA

CANDIDATOS EXCLUÍDOS NO CONCURSO				
Código do Candidato	Residência	*Valor da pontuação	Forma de expressão do método em	
			causa	
03/ME/2021-Físico-QuímicaHHBTK	Santiago	9,0	Não Aprovado (a)	
03/ME/2021-Físico-QuímicaKSSHB	Santiago	8,5	Não Aprovado (a)	
03/ME/2021-Físico-Química72SLY	São Nicolau	8,5	Não Aprovado (a)	
03/ME/2021-Físico-Química7U0KT	Boa Vista	8,3	Não Aprovado (a)	
03/ME/2021-Físico-QuímicaRE8BM	São Vicente	7,9	Não Aprovado (a)	
03/ME/2021-Físico-QuímicaRU9YA	Santiago	7,8	Não Aprovado (a)	
03/ME/2021-Físico-QuímicaLJMFE	Sal	7,2	Não Aprovado (a)	
03/ME/2021-Físico-QuímicaIEQXZ	Santiago	6,2	Não Aprovado (a)	
03/ME/2021-Físico-QuímicaY9QYL	Maio	4,5	Não Aprovado (a)	
03/ME/2021-Físico-Química-KB8KM	Santo Antão	0	Faltou	
03/ME/2021-Físico-QuímicaCDIND	São Vicente	0	Faltou	
03/ME/2021-Físico-QuímicaZU5MQ	Maio	0	Faltou	
03/ME/2021-Físico-QuímicaGM3YC	Santo Antão	0	Faltou	
03/ME/2021-Físico-QuímicaTLL8N	Santiago	0	Faltou	

IV. PEDIDO DE ESCLARECIMENTO

Os candidatos poderão solicitar esclarecimentos sobre a aplicação dos métodos de seleção no concurso através do correio eletrónico <u>cienciasexatasl01@gmail.com</u>

Publicado em 27 de maio de 2022

GRELHA DE CORREÇÃO- Caderno 1

	PARTE I - Conhecimentos Pedagógicos	
Nº de questão	Alternativa Correta	Cotação
1	d) Uma aprendizagem planificada fora do sistema escolar formal.	0,5
2	a) Um instrumento no qual o professor aborda de forma detalhada as atividades que pretende executar dentro da sala de aula.	0,5
3	c) Metodologia ativa	0,5
4	b) Formativa e certificativa.	0,5
5	d) Avaliação diagnóstica, formativa, sumativa e aferida.	0,5
6	d) Permitir ao professor atender cada aluno de acordo com as suas necessidades.	0,5
7	a) Pensa de forma lógico sobre o que é real.	0,5
8	c) Atividades que a criança só consegue fazer com a ajuda de alguém, um pouco mais adiante ela conseguirá fazer sozinha.	0,5
9	b) Deve ser o ponto de partida para a escolha de uma atividade de apredizagem.	0,5
10	b) Seja dado a todos os alunos o mesmo ensino.	0,5
11	c) Alterações relativamente estáveis e duradouras no comportamento.	0,5
12	a) A capacidade de lidar com a complexidade da informação corrente do ambiente e simultaneamente ter pensamento crítico, que pressupõe reflexão, análise e avaliação de conteúdos.	0,5
Total	60	

	PARTE II – Conhecimentos Legislação		
N° de questões	Alternativa Correta	Cotação	
1	d)- Gerir o processo de ensino-aprendizagem, no âmbito dos programas definidos.	0,5	
2	c)- A formação integral do indivíduo.	0,5	
3	b) Garantir as condições pedagógicas e de gestão para implementação do projeto educativo nacional.	0,5	
4	a)-O comportamento indicar perturbação psíquica que comprometa o normal desempenho das suas funções	0,5	
5	d)- A perda de três anos para os efeitos de aposentação e a imediata desligação do serviço para o agente.	0,5	

6	b)- Ser tratado com respeito pela comunidade educativa.	0,5
7	b)- Focar no desenvolvimento de competências cognitivas, nas	0,5
	dimensões éticas traduzidas em valores, atitudes e comportamentos dos alunos.	
8	c)- Será aplicada a pena de suspensão.	0,5
Total	4,0	

Grelha de correção/ Cotação

Matemática

	l° de estões		
que	1.	(A) 90	0,5 Val.
3	2.	(D) $\frac{3}{8}$	0,5 Val.
<u> </u>	3.	(B) Triângulo [BCF]	0,5 Val.
Grupo I	4.	(D) $\frac{10(3-\sqrt{3})}{3}$	0,5 Val.
	5.	(C) 28π	0,5 Val.
	6.	(B) 3	0,5 Val.
	1.	(D) 3h 45 min	0,5 Val.
	2.	(A) $0 < m < 1$	0,5 Val.
	3.	(B) 22	0,5 Val.
Grupo II	4.	(C) a - b = 1	0,5 Val.
9	5.	(B) 1010	0,5 Val.
1	6.	(A) entre 3750\$00 e 4250\$00	0,5 Val.
	7.	(D) -1	0,5 Val.

8. $(C)\frac{1}{4}x^2 - x$ 0,5 Val.

	-	1.1.1.	A variável esta alunos.	tística em estudo é	disciplin	a favorita dos	0,5 Val
		1.1.2.	É uma variável	estatística qualita	tiva.		0,5 Val
			x_i	f_i	$f_{ri}(\%)$	Amplitude do Ângulo (°)	2,0 Val
			Educação Musical	$\frac{7}{100} \times 300 = 21$	7	$\frac{7}{100} \times 360 = 25,2$	(0,1
	Grupo III		Educação Física	$\frac{18}{100} \times 300 = 54$	18	$\frac{18}{100} \times 360 = 64,8$	Val ×
	Gru	m	Ciências Naturais	$\frac{23}{100} \times 300 = 69$	23	$\frac{23}{100} \times 360 = 82,8$	20)
		1.2.	Inglês	$\frac{10}{100} \times 300 = 30$	10	$\frac{10}{100} \times 360 = 36$	
		9	Português	$\frac{10}{100} \times 300 = 30$ $\frac{11}{100} \times 300 = 33$ $31 \times 300 = 93$	11	$\frac{11}{100} \times 360 = 39,6$	
		1.17	Matemática	$\frac{31}{100} \times 300 = 93$	31	$\frac{31}{100} \times 360$ = 111,6	
			Total	300	100	360	

GRELHA DE COTAÇÕES

CADERNO 2

Grupo I – <u>Geometria</u>

Questões

1	5 pontos
2	5 pontos
3	5 pontos
4	5 pontos
5	5 pontos
6	

30 pontos

N° de Questõ es		Possíveis respostas		Cota ção
-0.1	ico – Química	Caderno – 2 Grelha de correção e cotação		I o .
			30 pontos	ò
	20 ponto	S		•
Qu	lestões 1.1.1 1.1.2 1.2		'	
Gr	upo III – <u>Tratament</u>	ro de dados	40 poritos	,
	7 8		5 pontos 5 pontos 40 pontos	3
	5 pontos		5 pontos	
	5 pontos			
	5 pontos	••••••		
	2		5 pontos	
	iestões 1		•	
Gr	upo II – <u>Números o</u>	perações/Álgebra e função		

	GRUPO-I			
	Partícula material A	3,0		
	$r = x \times e_x + y \times e_y \hat{U}$ $r = e_x + (t^2 + 2)e_y = (m)$			
	r roar fat i			
	$v = r \cdot \hat{\mathbf{U}} \boxed{v = 2te_y} (m/s)$			
	$\vec{a} = \vec{v} \hat{U} \vec{a} = 2\vec{e}_{y} (m/s^{2})$			
	$\vec{a}_t = \ \vec{v}\ \times_{\mathbf{R}} \hat{\mathbf{U}} \vec{a}_t = (2t) \times_{\mathbf{R}} \hat{\mathbf{U}} \vec{a}_t = 2t (m/s^2)$			
	$\ \hat{\boldsymbol{\sigma}}\ ^2 = \ \hat{\boldsymbol{\sigma}}_{l}\ ^2 + \ \hat{\boldsymbol{\sigma}}_{n}\ ^2 \hat{\mathbf{U}} 2^2 = 2^2 + \ \hat{\boldsymbol{\sigma}}_{n}\ ^2 \hat{\mathbf{U}} \ \hat{\boldsymbol{\sigma}}_{n}\ = 0$			
	$\begin{vmatrix} a_n & a_n & $			
90	P O movimento é retilíneo uniformemente variado, porque a componente			
0	normal da aceleração é nula e a componente tangencial da aceleração é uma			
	constante não nula. Partícula material B	3,0		
	$r = xxe_x + yxe_y$ û $r = 3\cos txe_x + 3\sin txe_y$	0,0		
	$v = r \cdot \hat{0}$ $v = -3 \operatorname{sent} \times \hat{e}_r + 3 \cos t \times \hat{e}_r$ $(m \mid s)$			
	$\ddot{a} = \ddot{V} \hat{U} \boxed{\ddot{a} = -3\cos t \times \dot{e}_x - 3\operatorname{sent} \times \dot{e}_y} (m/s^2)$			
k.	$\vec{a}_t = \ \vec{v}\ \times_{\mathbf{r}} \hat{\mathbf{U}} \vec{a}_t = \left(\sqrt{(-3\text{sen}t)^2 + (3\cos t)^2}\right) \times_{\mathbf{r}} \hat{\mathbf{U}}$			
	$\hat{U} \stackrel{r}{a}_{t} = \left(\sqrt{9(\text{sen}^{2}t + \cos^{2}t)}\right) \stackrel{r}{\times} e$			
	$\vec{a}_{t} = 3\vec{e}_{t} \hat{\mathbf{U}} \vec{a}_{t} = 0 \; ; \vec{a} = 3 \; m/s^{2}$			
	$\ \vec{a}\ ^2 = \ \vec{a}_t\ ^2 + \ \vec{a}_a\ ^2 \hat{\mathbf{U}} 3^2 = 0^2 + \ \vec{a}_a\ ^2 \hat{\mathbf{U}}$			
	$\ \vec{a}_n\ = \sqrt{9} = 3 \ m/\ s^2 \ \triangleright \ [\vec{a}_n = 3\vec{e}_n] \ (m/\ s^2)$			
	b O movimento é curvilíneo e uniforme, porque a componente normal da			
	aceleração é diferente de zero e a componente tangencial da aceleração é nula.			
1	GRUPO-II 3Li® 1s ² 2s ¹ ;	1,25		
		.,		
	$6^{C} \otimes 1s^2 2s^2 2p^2$;			
	$16^{5} \cdot 15^{2} \cdot 25^{2} \cdot 2p^{6} \cdot 35^{2} \cdot 3p^{4};$			
	$_{20}$ Ca ® $1s^2 2s^2 2\rho^6 3s^2 3\rho^6 4s^2$.			
	2000 0 10 20 20 00 00			
	₃ Li® I grupo, 2º periodo e bloco S;			
(20)	6 C ® /V grupo, 2º periodo e bloco P;			
	16 S ® V/ grupo, 3º periodo e bloco P;			
	20 Ca ® // grupo, 4º periodo e bloco S.			
1	2000 0 77 91000, 4 portodo e bioco 3.			

e, diferente número de massa.

2.1 | 0,25 | Isótopos são átomos do mesmo elemento, mas com diferente número de neutrões |

Exemplo:

Átomos	Número de eletrões	Número de massa
A	20	40
В	22	46
С	19	39
D	20	42

 A = Z + N Ü A-Z = N

 P/o atomo A
 P/o atomo B

 A-Z = N
 A-Z = N

 40-20=20
 46-22=24

P/o atomo C P/o atomo D
A-Z=N A-Z=N
30_10=20 42_20=22

OS atomos A e D, são Isótopos, pois, têm o mesmo número atómico (porque o número de eletrões é igual ao numero atómico), diferentes massas por terem diferentes números de neutrões.

GRUPO III

	a Luucação	
1.1.	Vamos considerar que inicialmente o H ₂ seja o reagente limitante;	1,5
	$2H_{2(g)} + O_{2(g)} \otimes 2H_{2}O_{g}$	
	$2mol H_2$ 1mol O_2 2mol (H_2O)	
	$2/10/H_2$ IIIO O_2 $2/10/(H_2O)$	
	$2(2g)H_2$ \bigcirc $2(18g)H_2O$	
	40 g $X = \frac{40g(H_2)^2 36g(H_2O)}{4g(H_{2Z})}$	
	$X = \frac{1440g(H_2O)}{4g} = 360g(H_2O)$	
(A)	4g	
~0	Agora, vamos considerar que o oxigénio (O ₂) seja o reagente limitante.	
	Agora, varios considerar que o oxigento (O ₂) seja o reagente infilitante.	
	$2H_{2(g)} + O_{2(g)} \otimes 2H_{2}O_{g}$	
	$2mol H_2$ 1mol O_2 2mol (H_2O)	
	$32g(O_2)$ R $2(18g)H_2O$	
	40 g $\times X = \frac{40g(O_2)' 36g(H_2O)}{32g(O_{22})}$	
	$X = \frac{1}{32g(O_{2Z})}$	
	$X = \frac{1440g(H_2O)}{32} = 45g(H_2O)$	
	A menor quantidade de H ₂ O formada é de 45g correspondente ao consumo total	
	de $O_2(g)$, que é neste caso o reagente limitante.	
1.2	24 10 9240	0,75
	$2H_{2(g)} + O_{2(g)} \otimes 2H_{2}O_{g}$	
	$2mol H_2$ 1mol O_2 2mol (H_2O)	
	$32g(O_2)$ R $2(18g)H_2O$	
	40 g $\times X = \frac{40g(O_2)^2 36g(H_2O)}{32g(O_{2z})}$	
2	$X = \frac{1440g(H_2O)}{32} = 45g(H_2O)$	
	32 A quantidade de H ₂ O formada é de 45g	
	A quantificació de 11 ₂ 0 Torribud e de 45g	

1.3	Cálculo da massa de H_2 que será consumida e o que sobrou em excesso. $2H_{_2(g)} + O_{2(g)} $	O,25
	$2(2g)H_{2} $	
	40g- $5g$ = $35gComo a massa total de H_2(g) era de 40g e só 5g de H_2 que reagiram, então temos um excesso de 35g de H_2.1.1-reagente limitante: O_2;1.2-massa de água formada: 45g;1.3-massa de H_2em excesso: 35g.$	
TOTAL	oassa as ₂ o oossas as og.	10,0